15 research outputs found

    An Efficiency Study On Water Extraction From Air Using Thermophoresis Method

    Get PDF
    Only three-dimensional of the world’s water is H2O, and common fraction of that's tucked away in frozen glaciers or otherwise out of stock for our use. As a result, some 1.1 billion individuals worldwide lack access to water, and a complete of two.7 billion realize water scarce for a minimum of one month of the year.An AWG extracts water from air.Water vapour within the air are often extracted by condensation - cooling the air below its saturation point, exposing the air to desiccants. At the same time applying thermophoresis method where the system is cooled to its max and surrounding atmospheric air is forcefully heated such that during there contact water droplets formation is increased and efficiency is increased which would be inversely proportional to the time taken. Even if applying cascade system of refrigeration, the efficiency of water generation from humid air is increased

    Modeling reaction time within a traffic simulation model

    Get PDF
    Human reaction time has a substantial effect on modeling of human behavior at a microscopic level. Drivers and pedestrian do not react to an event instantaneously; rather, they take time to perceive the event, process the information, decide on a response and finally enact their decision. All these processes introduce delay. As human movement is simulated at increasingly fine-grained resolutions, it becomes critical to consider the delay due to reaction time if one is to achieve accurate results. Most existing simulators over-simplify the reaction time implementation to reduce computational overhead and memory requirements. In this paper, we detail the framework which we are developing within the SimMobility Short Term Simulator (a microscopic traffic simulator), which is capable of explicitly modeling reaction time for each person in a detailed, flexible manner. This framework will enable modelers to set realistic reaction time values, relying on the simulator to handle implementation and optimization considerations. Following this, we report our findings demonstrating the impact of reaction time on traffic dynamics within several simulation scenarios. The findings indicate that in the incorporation of reaction time within microscopic simulations improves the traffic dynamics that produces more realistic traffic condition.Singapore-MIT Alliance for Research and Technolog

    Design and Analysis of an Automobile Disc Brake Rotor by Using Hybrid Aluminium Metal Matrix Composite for High Reliability

    No full text
    Due to their superior capabilities for manufacturing lightweight automotive components, aluminium metal matrix composites have gained a lot of attention in the last few years. Aluminium metal matrix composites are an exceptional class of metal matrix composites that can solve all the major problems related to the automobile industry. Aluminium matrix composites in the disc braking system have already been employed and studied by many scientists. However, the developed materials are not yet always sufficiently accurate and reliable. In this article, a new enhanced metal matrix composite material is used and studied to improve the efficiency of an ordinary car’s braking system. To improve the accuracy of the designated braking system, an innovative hybrid aluminium matrix composite (Al6061/SiC/Gr)-based brake rotor has been developed, and its effectiveness has been determined by finite element analysis. From the simulation, the product performance confirmed that the hybrid aluminium matrix composite (Al6061/SiC/Gr)-based brake rotor has the potential to replace the standard cast iron brake disc. The new enhanced hybrid composite material used in this study can be used for the efficient design of various braking parts

    Complete Genome Sequence Analysis of <i>Bacillus subtilis</i> Bbv57, a Promising Biocontrol Agent against Phytopathogens

    No full text
    Plant growth-promoting rhizobacteria (PGPR) are a group of root-associated beneficial bacteria emerging as one of the powerful agents in sustainable plant disease management. Among the PGPR, Bacillus sp. has become a popular biocontrol agent for controlling pests and the diseases of several crops of agricultural and horticultural importance. Understanding the molecular basis of the plant growth-promoting and biocontrol abilities of Bacillus spp. will allow us to develop multifunctional microbial consortia for sustainable agriculture. In our study, we attempted to unravel the genome complexity of the potential biocontrol agent Bacillus subtilis Bbv57 (isolated from the betelvine’s rhizosphere), available at TNAU, Coimbatore. A WGS analysis generated 26 million reads, and a de novo assembly resulted in the generation of 4,302,465 bp genome of Bacillus subtilis Bbv57 containing 4363 coding sequences (CDS), of which 4281 were functionally annotated. An analysis of 16S rRNA revealed its 100% identity to Bacillus subtilis IAM 12118. A detailed data analysis identified the presence of >100 CAZymes and nine gene clusters involved in the production of secondary metabolites that exhibited antimicrobial properties. Further, Bbv57 was found to harbor 282 unique genes in comparison with 19 other Bacillus strains, requiring further exploration

    Microsimulation of Demand and Supply of Autonomous Mobility On Demand

    No full text
    Agent-based models have gained wide acceptance in transportation planning because with increasing computational power, large-scale people-centric mobility simulations are possible. Several modeling efforts have been reported in the literature on the demand side (with sophisticated activity-based models that focus on an individual’s day activity patterns) and on the supply side (with detailed representation of network dynamics through simulation-based dynamic traffic assignment models). This paper proposes an extension to a state-of-the-art integrated agent-based demand and supply model—SimMobility—for the design and evaluation of autonomous vehicle systems. SimMobility integrates various mobility-sensitive behavioral models in a multiple time-scale structure comprising three simulation levels: (a) a long-term level that captures land use and economic activity, with special emphasis on accessibility; (b) a midterm level that handles agents’ activities and travel patterns; and (c) a short-term level that simulates movement of agents, operational systems, and decisions at a microscopic granularity. In that context, this paper proposes several extensions at the short-term and midterm levels to model and simulate autonomous vehicle systems and their effects on travel behavior. To showcase these features, the first-cut results of a hypothetical on-demand service with autonomous vehicles in a car-restricted zone of Singapore are presented. SimMobility was successfully used in an integrated manner to test and assess the performance of different autonomous vehicle fleet sizes and parking station configurations and to uncover changes in individual mobility patterns, specifically in regard to modal shares, routes, and destinations
    corecore